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Introduction:  
    The PROOF project focuses on offshore-related grid maintenance scheduling, with specific constraints tailored to this 
problem. At the core of PROOF lies a wind power forecaster and a scheduling engine. The forecaster provides reliable long-
term (days to week ahead) wind power predictions. This longer horizon distinguishes the PROOF forecasters from other 
available forecasters typically used by system operators (which usually focus on higher accuracy in shorter horizons, e.g., 
day-ahead to close to real-time). The forecaster's longer-term horizon is crucial for this project as it serves as a key input to 
the scheduling engine and supports the strategic planning of maintenance activities. The scheduling engine will be detailed 
in the next article. 

    Variations in wind power forecasts can have a substantial impact on maintenance schedules. For example, when wind 
generation is high, maintenance activities are often postponed to capitalize on these favorable conditions. As a result, wind 
farms optimize energy production and the system operator maximizes wind power utilization. 

Forecasting Approach:  
This study uses an academic test case that represents a segment of the offshore grid. In this case study, we train and 
evaluate several forecasting models to predict wind power for 1 to 7 days in advance. We employ a rolling horizon approach, 
which allows us to update the forecasts daily while covering the entire week-ahead horizon. Figure 1 shows how forecasts 
are revised every day with this rolling horizon approach. 

  

Figure 1) Every day, the model updates predictions for the next 7 days. 

We developed different forecasting methods, each tailored to address distinct goals and perspectives. Initially, these 
methods are compared to each other and subsequently with other available forecasting services, which we refer to as 
Baseline 1 and Baseline 2. These external forecasters also serve as inputs to our forecasting models, which enables our 
models to learn from their prediction errors.  

• Time Series Forecaster (Model 1) 

The Time Series Forecaster aims to predict wind power generation at 15-minute intervals with a 7-day horizon. This model 
leverages temporal dependencies and patterns in the data to make accurate predictions. Figure 2 illustrates the output 
shape of the Time Series Forecaster, which predicts wind variations with a 15-minute resolution for the next 7 days. 
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Figure 2) The output shape of the Time Series Forecaster for 7 days ahead with 15-minute granularity  

• Temporal Distribution Forecaster (Model 2) 

The Temporal  istribution Forecaster aims to predict the distribution of wind power generation within  -hour windows. The 
predicted distributions provide insights into variability over these blocks. Figure   shows the output representation of this 
forecaster. 

 

Figure  ) The output representation of the  istribution forecaster, 7 days ahead 

• Multi-Threshold Classification Forecaster (Model 3) 

The Multi-Threshold Classification Forecaster predicts whether wind power will exceed predefined thresholds within 
average  -hour windows for the next 7 days. These thresholds are typically defined per asset in the existing process. Figure 
4 shows the output representation of this forecaster. 
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Figure 4) The output representation of the Multi-threshold forecaster, 7 days ahead. 

Evaluation Metrics:  
To evaluate the performance of our models and baselines, we incorporated traditional metrics like MAE and W , as well as 
new problem-oriented metrics that are explained in the following. 

• Mean Absolute Error (MAE): 

MAE is defined as: 

 

where 𝑦𝑖  is the actual value, �̂�𝑖  is the predicted value, and 𝑛 is the number of observations. 

• Wasserstein Distance (WD): 

 W  measures the effort required to transform one distribution into another. It is defined as: 

 

where 𝑝 and 𝑞 are the distributions being compared, and Π(𝑝, 𝑞) represents the set of all possible joint distributions with 
marginals 𝑝 and 𝑞.  

• Problem-Specific Metrics:  

We adapted classification metrics such as True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) 
to align with the specific requirements of the maintenance scheduling problem. This adaptation provides more intuitive 
insights into when maintenance should be planned or avoided. 

We define outcomes in two categories based on operational relevance: 

Relevant Outcome: When actual wind power is low (opportunity to schedule maintenance activity) 

Irrelevant Outcome: When actual wind power is high (maintenance activity should be avoided) 

Based on these definitions, we identify four possible scenarios, illustrated in Figure 5: 
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Case 1 (TP): Actual wind power is low, and the predicted wind power is also low. This is an ideal scenario, as we 
correctly identify a suitable opportunity for maintenance. 

Case 2 (FN): Actual wind power is low, but the predicted power is high. This leads to a missed maintenance 
opportunity due to an overestimated wind power. 

Case   (FP): Actual wind power is high, but the predicted power is low. This results in scheduling maintenance when 
conditions are not suitable, which can lead to wasted resources and cancellation costs. 

Case 4 (TN): Actual wind power is high, and the predicted power is also high. In this scenario, maintenance is 
appropriately avoided, saving resources and avoiding disruptions. 

 

Figure 5) Problem-Specific metrics for evaluating model performance  

Case Study: 
In this section, we present and analyze the results obtained from the three models, as well as two baselines. For meaningful 
comparisons, the results have been normalized on a scale from   to 1 relative to the maximum capacity of the wind farm. 
We conducted forecasting over a one-month test set, where, for each forecast initiation time, predictions were made for the 
next seven days. 

• Model 1:  

For illustration, seven days ahead time-series forecast results initiated on May 4, 2 2 , are shown in Figure  . The actual 
values are displayed in black, and our time series forecaster predictions (Model 1) are depicted in Blue, Baseline 1 and 
Baseline 2 results are, respectively, shown in red and orange. 

For this forecast period, the MAE (normalized by farm capacity) for Model 1 is  .1 , which is significantly lower than both 
Baseline 1's MAE of  .24 and Baseline 2's MAE of  .17. These results indicate that Model 1 outperforms both Baseline 1 and 
Baseline 2 in terms of MAE for this specific forecast initiation time. 

In particular, between May 5, to May  , 2 2 , the predictions from Model 1 align well with the actual generation during this 
period, while Baseline 1 and Baseline 2 show larger deviations. Another instance occurred around May  , 2 2 . Baseline 1's 
forecast significantly overestimates the generation, while Model 1 provides a prediction much closer to the actual value. 
This discrepancy highlights Model 1's ability to more effectively capture the variability in wind power generation compared 
to Baseline 1 and Baseline 2 during certain periods. 
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Figure  : Time series Forecast with forecast initiation time: 2 2 - 5- 4 

 

Figure 7 summarizes the overall performance of the forecasting models over the entire one-month test period. The MAE 
values (scaled by farm capacity) over this period are  .15 for Model 1,  .1  for Baseline 1, and  .1  for Baseline 2. These 
results demonstrate that, on average, our model outperforms both Baseline models.  

  

Figure 7: Overall performance of the time series forecaster Model 1 and Baselines 1-2 

• Model 2:  

The Temporal  istribution Forecaster aims to predict the distribution of 15-minute wind power variations within each  -hour 
block over a seven-day horizon. This approach not only provides insights into the variability of wind power generation but 
also directly captures temporary exceedances of thresholds that might impact assets like transmission lines.  

For each forecast initiation time, we generated forecasts spanning the subsequent seven days. Given that a day consists of 
three  -hour blocks, this process results in a total of 21 (7× =21) distributions per initiation time. For a fair comparison, the 
actual observations, along with the predictions of Model 1, Baselines 1 and 2, were transformed into the output format 
required by Model 2. The employed evaluation metric is the W . 

For illustration, we present part of the 7-day-ahead forecasts, initiated on May 11, 2 2 , as shown in Figure  . Model 2, which 
is specifically designed for distribution forecasting, demonstrates a W  of  .1 over the entire week, which is lower than that 
of Model 1 ( .1 ) and Baselines 1 and 2, which have W  of  .1  and  .1 , respectively. When zooming at specific  -hour 
blocks, such as the one from 2 2 - 5-1    :  :   to 1 :  :   (highlighted in Figure  ), the predicted distribution of Model 
2 (M2) is more accurate in terms of both relative frequency (normalized occurrence) and proximity to the actual bin 
compared to the other models. In this case, the W  of Model 2 is  .  , which is lower than that of Model 1 ( .2 ), Baseline 
1 ( .7 ), and Baseline 2 ( .25). 
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For a more comprehensive view, Figure   displays the W  values for all models over one month of the test set. It can be seen 
that Model 2, which is designed for distribution forecasting, still outperforms the other models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  ) 7-day-ahead wind power distribution forecasts initiated on May 11, 2 2 . 

 

Figure  : Performance of the distribution forecaster and other models in terms of W  over one month. 

 

• Model   

 This model aims to predict whether the average wind power exceeds or falls below predefined thresholds for each  -hour 
interval over the next seven days.  
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To compare the results of Model   with other models and baselines, we apply the problem-specific metrics, which were 
discussed earlier. These metrics allow us to assess the models' effectiveness in a domain-relevant manner. These metrics 
include captured opportunities, missed opportunities, wasted resources, and saved resources.  epending on the specifics 
of the use cases, these metrics guide model evaluation. For instance, if many maintenance tasks must be scheduled within 
a short time frame, maximizing captured opportunities and minimizing missed opportunities are important. In another case, 
if the cost of canceling resources is high and should be seriously avoided, minimizing wasted resources becomes critical. 
Notably, among these metrics, the saved resources metric is the least significant for this problem. This metric refers to 
instances when high wind power is correctly predicted. In these instances, no activities were scheduled, nor should any 
have been. A model that excels solely on this metric does not provide much relevance for our specific needs. 

  

  

 
Figure 1 : Performance Comparison of Models with  omain-related Metrics 

The results of the same test month are shown in Figure 1 . The relevant class is wind power below    MW. It can be observed 
that the baseline models, Models 1 and 2, focus less on capturing opportunities (  . % and   . %, respectively) and more 
on saving resources, which is less relevant for this problem (  . % and  2.2%). The time series forecaster (Model 1) places 
greater emphasis on capturing opportunities (7 .7%) compared to the baseline models. Model 2 (the distribution forecaster) 
and Model   (the threshold forecaster) both achieve higher scores in capturing opportunities and have fewer instances of 
missed opportunities. However, it should be noted that, in terms of minimizing wasted resources, Baseline Models 1 and 2 
perform better. 

The development of this framework for analyzing the performance of various models, without integrating the forecast results 
into the downstream optimization problem, will facilitate model tuning for this specific use case.  
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Conclusion 
The PROOF project successfully developed three specialized week-ahead forecasting models to enhance offshore wind 
power maintenance scheduling. These models perform better than the baseline forecasters currently available to the 
system operator. The first model, the Time Series Forecaster (Model 1), predicts wind power at 15-minute intervals and 
outperforms traditional baselines in accuracy. The second model, the Temporal  istribution Forecaster (Model 2), predicts 
the distribution of wind power within  -hour windows. This model offers valuable insights into power variability. The third 
model, the Multi-Threshold Classification Forecaster (Model  ), predicts whether wind power will exceed predefined 
thresholds. We developed problem-specific metrics such as captured opportunities, missed opportunities, wasted 
resources, and saved resources to evaluate the models not only for statistical accuracy but also for domain-related 
metrics. This evaluation approach will guide and simplify model selection and tuning without disrupting the forecasting 
pipeline, as it eliminates the need to integrate predictions directly into the downstream scheduling optimization problem. 
In the second phase of the project, we will further refine and optimize these models to address the specific complexities of 
the problem at hand. 


